Mata Kuliah Aplikasi Kontrol Nonlinear (3 SKS)

Deskripsi Mata Kuliah :
Matakuliah Aplikasi Kontrol Nonlinear bertujuan untuk mengkaji sistem nonlinear dan aplikasinya pada bidang matematika maupun non-matematika. Pemahaman konsep kontrol nonlinear difokuskan antara lain meliputi linearisasi di sekitar titik kesetimbangan, sistem nonlinear dengan atau tanpa lup, relokasi posisi poles, sistem dengan suatu state feedback atau output feedback , beberapa types of feedback ( proportional, integral, derivative, dan PID ), serta penerapan prinsip optimal kontrol pada solusi optimal dari suatu permasalahan nonlinear. Pembahasan juga mendiskusikan terkait sifat-sifat sistem berbasis respon sistem maupun posisi poles untuk mengkaji kestabilan, keterkontrolan, serta keobservabelan dengan atau tanpa umpan balik. Penerapan dan simulasi didiskusikan dengan ilustrasi permasalahan berbasis techno-echo-enterpreneur-maths. Pembelajaran dilakukan dengan menerapkan gabungan antara pendekatan problem-based learning , diskusi, dan metode konvesional. Kegiatan pembelajaran diarahkan untuk memotivasi keterampilan dalam presentasi kelompok dengan topik-topik yang ditentukan. Pelaksanaan penilaian ditentukan dengan bobot proporsional, yang dilakukan selama proses pembelajaran dengan keaktifan partisipasi interaktif, presentasi, tugas dan ujian tengah semester, serta ujian akhir semester.
Capaian Mata Kuliah :
  1. Mahasiswa memiliki kemampuan untuk menentukan titik kesetimbangan dan bentuk linear dari sistem nonlinear di sekitar titik kesetimbangan.
  2. Mahasiswa memiliki pengetahuan untuk mengkaji kestabilan suatu sistem nonlinear dengan atau tanpa umpan balik berdasarkan posisi nilai eigen atau poles di separoh bidang kompleks.
  3. Mahasiswa memiliki pengetahuan dalam meredisain sistem nonlinear tanpa umpan balik dengan mereposisi poles dari sistem awal untuk memenuhi perilaku kestabilan yang ditentukan.
  4. Mahasiswa memiliki kemampuan dalam mendisain umpan balik pada suatu sistem nonlinear untuk memenuhi perilaku kestabilan, keterkontrolan, serta keterobservabelan yang ditentukan.
  5. Mahasiswa memiliki pengetahuan tentang prinsip optimal kontrol untuk menentukan solusi optimal dari suatu sistem nonlinear dengan atau tanpa umpan balik , serta mampu mendemonstrasikan simulasi maupun bukti matematisnya.
  6. Mahasiswa memiliki tanggung jawab matematis dan kontrol diri dalam mengaplikasikan konsep kontrol nonlinear, baik secara mandiri maupun kelompok, dalam bidang matematika maupun bidang non-matematika berbasis techno-echo-entrepreneur-maths .
  7. Mahasiswa mampu memberikan bukti analitik beserta ilustrasi simulasinya berbasis Matlab dari suatu permasalahan kontrol nonlinear berbasis techno-echo-entrepreneur-maths .
Sumber Rujukan :


  1. Bryson, A.E. and Ho, Y-C. 1969. Applied Optimal Control . Gim and Company.
  2. Caldwell, J. and Douglas, K.S.Ng. 2004. Mathematical Modelling: Case Studies and Project. Kluwer Academic Publisher.
  3. Franklin, Gene F., Powell, J.D. and Emami-Naeini, Abbas, 1986. Feedback Control of Dynamic Systems . Addison-Wesley Publishing Company.
  4. Lewis, Frank L., 1992. Applied Optimal Control & Estimation, Digital Design & Implementation . Prentice-Hall International.
  5. Olsder, G.J. (with the collaboration of J.W. van der Woude) 1996. Mathematical System Theory . Delft Uitgevers Maatschappij.
  6. Slotine, J-J.E. and Li, W. 1991. Applied Nonlinear Control . Prentice-Hall.
  7. Sokolowski, J.A. and Banks, C.M. 2009. Principles of Modeling and Simulations: A Multidisiplinary Approach. John Wiley & Sons.



© 2025. Develop BY PPTI UNESA TEAM
Powered By ALim Sumarno